Package: missForestPredict 1.0

Elena Albu

missForestPredict: Missing Value Imputation using Random Forest for Prediction Settings

Missing data imputation based on the 'missForest' algorithm (Stekhoven, Daniel J (2012) <doi:10.1093/bioinformatics/btr597>) with adaptations for prediction settings. The function missForest() is used to impute a (training) dataset with missing values and to learn imputation models that can be later used for imputing new observations. The function missForestPredict() is used to impute one or multiple new observations (test set) using the models learned on the training data.

Authors:Elena Albu [aut, cre]

missForestPredict_1.0.tar.gz
missForestPredict_1.0.zip(r-4.5)missForestPredict_1.0.zip(r-4.4)missForestPredict_1.0.zip(r-4.3)
missForestPredict_1.0.tgz(r-4.4-any)missForestPredict_1.0.tgz(r-4.3-any)
missForestPredict_1.0.tar.gz(r-4.5-noble)missForestPredict_1.0.tar.gz(r-4.4-noble)
missForestPredict_1.0.tgz(r-4.4-emscripten)missForestPredict_1.0.tgz(r-4.3-emscripten)
missForestPredict.pdf |missForestPredict.html
missForestPredict/json (API)

# Install 'missForestPredict' in R:
install.packages('missForestPredict', repos = c('https://sibipx.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sibipx/missforestpredict/issues

On CRAN:

4.30 score 3 scripts 168 downloads 8 exports 5 dependencies

Last updated 12 months agofrom:0ed4a3ae48. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winOKNov 07 2024
R-4.5-linuxOKNov 07 2024
R-4.4-winOKNov 07 2024
R-4.4-macOKNov 07 2024
R-4.3-winOKNov 07 2024
R-4.3-macOKNov 07 2024

Exports:calculate_convergencecheck_predictor_matrixcreate_predictor_matrixevaluate_imputation_errormissForestmissForestPredictproduce_NAprop_usable_cases

Dependencies:latticeMatrixrangerRcppRcppEigen

missForestPredict convergence criteria and error monitoring

Rendered frommissForestPredict_convergence_criteria_and_error_monitoring.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-12-08
Started: 2022-02-09

Using the missForestPredict package

Rendered frommissForestPredict_usage.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-12-11
Started: 2022-01-25